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Axisymmetric/uncoupled massless scalar field perturbations
to extreme Kerr /Reissner-Nordstrom

spinning BH charged BH

(Aretakis 2012)

First order transverse derivatives of field on horizon don’t decay

along radial direction

Higher order derivatives grow

Conservation law on the horizon

Depends only on local geometry of horizon and not global geometry
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Other fields? Scalar, electromagnetic, gravitational perturbations

(Lucietti, Murata, Reall, Tanahashi 2013)

scalar on extreme Kerr

(Casals, Gralla, Zimmerman 2016)

Charged massless Same as above result
scalar on extreme RN

(Zimmerman 2016)

Only extremal? Transient growth at intermediate times

(Gralla, Zimmerman, Zimmerman 2016)

Generically non-extreme, fine-tuned initial

Non-linear end state? . . 1. .
perturbations - extreme BH (instability persists)

(Murata, Reall, Tanahashi 2013)

General extreme horizons Compact horizon topology

(Lucietti, Reall 2012)
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Aretakis - only on the future horizon

Not typical instability - scalar field itself decays

Only transverse derivatives of scalar field on the horizon grow at late times

Only Ingoing observers on the horizon see this effect

General covariance prevents observer independent quantities
from becoming large

Field strength Kretschmann Squared electric field strength
invariant invariant observed by infalling observer
o UV po 2 Q0 (Gralla, Zimmerman
F ﬁFaﬁ R Ruupa B = Fluoéu F'uﬁuﬁ 2018)

decays decays grows
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Anti-de-Sitter in 5d

Maxwell field coupled to AdS gravity in 5 dimensions

2 2
d 82 _ 6_ N f dT2 | dz | d—Q Parameters of black hole -
i ~2 ' f - Ay charge density and AdS length
- 4 6 Re-parameterize to make
f =1-32 (]' _ 20-) T 22 (1 B 30-) temperature a parameter
T X O — O Extremal limit
Boundary Horizon
z — 0 z—1

l—2z~2x r <1
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dwd’k _, ., .7 -
Ansatz G — / (27T)4 e_zwt_i_?/k.yg(kyw) ZB)
Og =29 ODE for g
Ingoing waves on horizon Appropriate decay at boundary of AdS
R, ~ e W x— 0 Ry ~ x5 T — 00
Horizon Boundary
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on the horizon of the black hole v P p2h

Interacting theory - integrate through the
bulk to include near-horizon effects

Do we see a signature for the Aretakis instability for a CFT that lives on the boundary?

Boundary correlators grow or decay slower than expected?
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At tree level,

<0102> — >\<0102> <01020304> — )\2<(9102(9304> under ti — )\_1ti

late times

near

Given that the scaling of G5%" is .
different, do we see a signature 8 ~ U / , 1l—2—=0,v—= 0

from near-horizon region?

Temporal conformal symmetry
of boundary operator
preserved due to the Aretakis
instability!

We argue that only the near
region matters in leading order
at late times on the boundary
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Conserved quantity on extremal horizons

Initial data must extend to the horizon Aretakis, Lucietti, Murata, Reall,

Tanahashi, Virmani...

‘Discrete’ case only (eg. massless, axisymmetric scalar in Kerr)

Unity?

Mode sum approach using matched asymptotics

i . . . . Casals, Gralla, AR, A.Zimmerman,
Initial data is supported entirely outside the horizon asals, foralia mmerman
P.Zimmerman

"Non-discrete” case only generally (eg. non-axisymmetric scalar in Kerr)
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Near Overlap Far
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[%(@4@ T a’l“w]?":M =0 as v— o0 3§f¢ N v_h+”f1(v:v)

H,

2 0 Each mode

(8T¢)T:M M v as U= 0 Horizon Boundary

Initial data extends to the horizon Initial data does not extend to the horizon
Discrete case only Non-discrete case only

Discrete & Non-discrete - conditions on mass and coupling charge of perturbing field

In the BTZ black hole, we can construct the full Green function allowing us to explore further
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Banados Teitelboim Zanelll (BTZ)

(ongoing)

Rotating black hole in 3d - asymptotically AdS

Gravity in 3d special - All vacuum spacetimes have constant curvature, locally

Periodically identify along a Killing field - different global geometries

Rotating black hole - similar properties to Kerr

Can build GBTZ from G245 (Method of Images)

ret ret

oo
BTZ E : AdSs .
Gret I Gret ‘ d’' P’ +27n (Steif 1993)

n=——~oo
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Not clear how to obtain a decay rate for arbitrary initial data
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Null Geodesics

Geodesics parameterised by b = L/E
b = 1 geodesics are trapped on the horizon

0 < b <1 geodesics appear regularly in logV’

1 Cause the instability on the horizon!
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Initial data extending to horizon

Putting the field and source on the horizon doesn’t give any decay rates

Field - on, Source - near => Intermediate times will give us a hint as to what to expect in the
case where both field and source points are on the horizon

R’
Ry =0.01

o ®=0
R’'=0.0105 i ®=0

Ry =0.01 ! V'=1.2
®=0 h=5.7
»=0
V=12
h=1.7

Intermediate slope independent of mass of perturbing field!
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instability remains a mystery

isn’t too easy but we have a
better understanding now

Tying up the two techniques o Lk \MM

Null geodesics in the near horizon
region seem to be important
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