Critical Behavior of Extremal Black Hole Perturbations. III. Holography?

Arun Ravishankar

Pacific Coast Gravity Meeting 2018 Caltech

Samuel Gralla and Peter Zimmerman

with

University of Arizona

Transverse derivatives of perturbations grow *at late times on the horizon*

Late times Horizon

Radial coordinate

Transverse derivatives of perturbations grow *at late times on the horizon*

Holographic signature?

Transverse derivatives of perturbations grow *at late times on the horizon*

Holographic signature?

No explicit example studied in asymptotically *AdS*

Simplest asymptotically AdS black hole to study - BTZ black hole (Bañados-Teitelboim-Zanelli)

Simplest asymptotically AdS black hole to study - BTZ black hole (Bañados-Teitelboim-Zanelli)

3 D vacuum solutions with cosmological constant

 $R_{\mu\nu} = 2\Lambda g_{\mu\nu}$

Simplest asymptotically AdS black hole to study - BTZ black hole (Bañados-Teitelboim-Zanelli)

3 D vacuum solutions with cosmological constant

$$R_{\mu\nu} = 2\Lambda g_{\mu\nu}$$

Negative curvature => locally isometric to *AdS*

Simplest asymptotically AdS black hole to study - BTZ black hole (Bañados-Teitelboim-Zanelli)

3 D vacuum solutions with cosmological constant

$$R_{\mu\nu} = 2\Lambda g_{\mu\nu}$$

Negative curvature => locally isometric to *AdS*

Global identifications - different geometries

Simplest asymptotically AdS black hole to study - BTZ black hole (Bañados-Teitelboim-Zanelli)

3 D vacuum solutions with cosmological constant

$$R_{\mu\nu} = 2\Lambda g_{\mu\nu}$$

Negative curvature => locally isometric to *AdS*

Global identifications - different geometries

$$\phi \sim \phi + 2\pi$$

$$\phi \sim \phi + 2\pi$$

This makes it a black hole and not just AdS_3

Green's function

$$(\Box - \mu^2)G(x^{\alpha}, x^{\alpha'}) = \delta_3(x^{\alpha}, x^{\alpha'})$$

Green's function
$$(\Box - \mu^2)G(x^{\alpha}, x^{\alpha'}) = \delta_3(x^{\alpha}, x^{\alpha'})$$

In ingoing, co-rotating coordinates

$$G(x^{\alpha}, x^{\alpha'}) = \sum_{m} e^{im\Delta\varphi} G_m(\Delta V, x, x')$$

where $\Delta V = V - V'$ and $\Delta arphi = arphi - arphi'$

Green's function
$$(\Box - \mu^2)G(x^{\alpha}, x^{\alpha'}) = \delta_3(x^{\alpha}, x^{\alpha'})$$

In ingoing, co-rotating coordinates

$$G(x^{\alpha}, x^{\alpha'}) = \sum_{m} e^{im\Delta\varphi} G_{m}(\Delta V, x, x')$$

where $\Delta V = V - V'$ and $\Delta \varphi = \varphi - \varphi'$

Boundary conditions - Ingoing waves at horizon & Dirichlet at boundary

Boundary propagators

Boundary-Boundary propagator

Bulk-Boundary propagator

where $h = \frac{1}{2} \left(1 + \sqrt{1 + \ell^2 \mu^2} \right)$

Results

Boundary-Boundary propagator for late times

$$G_{\partial\partial}(\Delta V,\Delta\varphi) = \frac{-1}{4\pi r_0} \frac{\Delta V^{-2h}}{\Gamma(2h)} \sum_m e^{i\Delta\varphi} \frac{\Gamma(h-im)}{\Gamma(1-h-im)}$$

Bulk-Boundary propagator for late times

$$G_{B\partial}(x,\Delta V,\Delta\varphi) = \frac{-1}{4\pi r_0} \frac{\Delta V^{-h} (1+\Delta V x)^{-h}}{\Gamma(2h)} \sum_m \frac{\Gamma(h-im)}{\Gamma(1-h-im)}$$
$$\times \exp\left(im\left(\frac{1+\Delta V x}{(1+x+\sqrt{1+2x})\Delta V}\right)\right)$$

Near Horizon-Late time scaling symmetry of extreme black holes

Near Horizon-Late time scaling symmetry of extreme black holes

$$\phi \sim V^{-P} f(Vx)$$

Near Horizon-Late time scaling symmetry of extreme black holes

$$\phi \sim V^{-P} f(Vx)$$

On Horizon decay rate

$$V^{-P}$$

Near Horizon-Late time scaling symmetry of extreme black holes

$$\phi \sim V^{-P} f(Vx)$$

On Horizon decay rate

Off Horizon decay rate

$$V^{-P}$$

$$V^{-2P}$$

Near Horizon-Late time scaling symmetry of extreme black holes

$$\phi \sim V^{-P} f(Vx)$$

On Horizon decay rate

Off Horizon decay rate

$$V^{-2P}$$

P is related to the mass of the scalar field

Results

Boundary-Boundary propagator for late times

$$G_{\partial\partial}(\Delta V, \Delta\varphi) = \frac{-1}{4\pi r_0} \frac{\Delta V^{-2h}}{\Gamma(2h)} \sum_m e^{i\Delta\varphi} \frac{\Gamma(h-im)}{\Gamma(1-h-im)}$$

Bulk-Boundary propagator for late times

$$G_{B\partial}(x,\Delta V,\Delta\varphi) = \frac{-1}{4\pi r_0} \frac{\Delta V^{-h} (1+\Delta V x)^{-h}}{\Gamma(2h)} \sum_m \frac{\Gamma(h-im)}{\Gamma(1-h-im)}$$

$$\times \exp\left(im\left(\frac{1+\Delta V x}{(1+x+\sqrt{1+2x})\Delta V}\right)\right)$$

If ϕ is not identified as periodic, geometry is a patch of AdS_3

If ϕ is not identified as periodic, geometry is a patch of AdS_3

So there should be no Aretakis instability

If ϕ is not identified as periodic, geometry is a patch of AdS_3

So there should be no Aretakis instability

Sum over *m* turns into an integral over *m*

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right)$$

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right) \qquad \text{Poles at} \\ m = -i(h + n)$$

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right) \qquad \text{Poles at} \qquad m = -i(h + im)$$

Contour integral!

n

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right) \qquad \text{Poles at} \\ m = -i(h + n) \end{bmatrix}$$

Contour integral!
$$I = e^{h\Delta\varphi} \left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)^h {}_0\tilde{F}_1 \left(-1 - 2h; -\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)e^{\Delta\varphi}\right)$$

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right) \qquad Poles at \\ m = -i(h + n)$$
Contour integral!
$$I = e^{h\Delta\varphi} \left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)^h {}_0\tilde{F}_1 \left(-1 - 2h; -\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)e^{\Delta\varphi}\right)$$

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right) \qquad Poles at \\ m = -i(h + n)$$
Contour integral!
$$I = e^{h\Delta\varphi} \left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)^h {}_0\tilde{F}_1 \left(-1 - 2h; -\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)e^{\Delta\varphi}\right)$$

Exactly cancels out what causes the Aretakis effect!!

$$I = \frac{1}{2\pi} \int_{-\infty}^{\infty} dm \frac{\Gamma(h - im)}{\Gamma(1 - h - im)} \exp\left(im\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)\right) \qquad \text{Poles at} \\ m = -i(h + n) \end{bmatrix}$$
Contour integral!
$$I = e^{h\Delta\varphi} \left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)^h {}_0\tilde{F}_1 \left(-1 - 2h; -\left(\frac{1 + \Delta Vx}{(1 + x + \sqrt{1 + 2x})\Delta V}\right)e^{\Delta\varphi}\right)$$

Exactly cancels out what causes the Aretakis effect!!

'Planar BTZ' - Bulk-Boundary propagator for late times

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

 $G_{\partial\partial} \sim V^{-2h}$

as $V \to \infty$

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

$G_{\partial\partial} \sim V^{-2h}$	$G_{B\partial} \sim V^{-h} f(Vx)$
as $V \to \infty$	as $V \to \infty$ and $x \to 0$

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

$G_{\partial\partial} \sim V^{-2h}$	$G_{B\partial} \sim V^{-h} f(Vx)$	$\partial_x^n G_{B\partial} \sim V^{n-h} g(Vx)$
as $V o \infty$	as $V \to \infty$ and $x \to 0$	as $V \to \infty$ and $x \to 0$

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

 $\begin{aligned} G_{\partial\partial} \sim V^{-2h} & G_{B\partial} \sim V^{-h} f(Vx) & \partial_x^n G_{B\partial} \sim V^{n-h} g(Vx) \\ \text{as } V \to \infty & \text{as } V \to \infty \text{ and } x \to 0 & \text{as } V \to \infty \text{ and } x \to 0 \end{aligned}$

• It disappears in the planar limit (Poincaré patch of AdS_3), as it must

 $G^p_{B\partial} \sim V^{-2h}$

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

$$\begin{aligned} G_{\partial\partial} \sim V^{-2h} & G_{B\partial} \sim V^{-h} f(Vx) & \partial_x^n G_{B\partial} \sim V^{n-h} g(Vx) \\ \text{as } V \to \infty & \text{as } V \to \infty \text{ and } x \to 0 & \text{as } V \to \infty \text{ and } x \to 0 \end{aligned}$$

• It disappears in the planar limit (Poincaré patch of AdS_3), as it must

 $G^p_{B\partial} \sim V^{-2h}$

Questions/Future directions

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

$$\begin{aligned} G_{\partial\partial} \sim V^{-2h} & G_{B\partial} \sim V^{-h} f(Vx) & \partial_x^n G_{B\partial} \sim V^{n-h} g(Vx) \\ \text{as } V \to \infty & \text{as } V \to \infty \text{ and } x \to 0 & \text{as } V \to \infty \text{ and } x \to 0 \end{aligned}$$

• It disappears in the planar limit (Poincaré patch of AdS_3), as it must

 $G^p_{B\partial} \sim V^{-2h}$

Questions/Future directions

• What is the CFT dual to the Aretakis instability? (4-point function?)

• Extremal asymptotically AdS black hole - BTZ shows Aretakis

$$\begin{aligned} G_{\partial\partial} \sim V^{-2h} & G_{B\partial} \sim V^{-h} f(Vx) & \partial_x^n G_{B\partial} \sim V^{n-h} g(Vx) \\ \text{as } V \to \infty & \text{as } V \to \infty \text{ and } x \to 0 & \text{as } V \to \infty \text{ and } x \to 0 \end{aligned}$$

• It disappears in the planar limit (Poincaré patch of AdS_3), as it must

 $G^p_{B\partial} \sim V^{-2h}$

Questions/Future directions

- What is the CFT dual to the Aretakis instability? (4-point function?)
- Does the Aretakis instability occur in more general planar black holes?